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Why Now?

• Syntheses of good confinement and optimal power handing drive us 

to 3D, often involve stochastic magnetic fields.

i.e.

• RMP: LÆH transition threshold

– turbulence persists, though modifed

– flows, 〈𝐸𝐸𝑟𝑟〉 and interactions modified

• Stellerator

• Island Configurations – ITB

• Disruption Evolution

ÎWhat of turbulence structure?



Effects on Turbulence Structure?

• How does stochastic field modify structure and rates of 

turbulence? 

• E.g. Ancient Classics: Kaw, Valeo, Rutherford ‘79 et. seq.

– Tearing, in braided magnetic field

– ‘anomalous dissipation’ by                                      rescue resistive MHD 

𝐸𝐸∥ = 𝜇𝜇𝐽𝐽∥ − 𝜇𝜇𝛻𝛻⊥2𝐽𝐽∥

– Rather minimal micro ÅÆ macro connection

• Begs for a ‘simple problem’ for in-depth analysis 

electron viscosity
hyper-resistivity



• Resistive Interchange + Static, specified �𝑏𝑏2 𝑘𝑘′

𝜕𝜕𝑡𝑡 − 𝜈𝜈𝛻𝛻⊥2 𝛻𝛻⊥2𝜙𝜙 = −𝑆𝑆 𝛻𝛻∥
0 + 𝑏𝑏 ⋅ 𝛻𝛻⊥ 𝛻𝛻∥

0 + 𝑏𝑏 ⋅ 𝛻𝛻⊥ 𝜙𝜙 −
𝑔𝑔
𝐿𝐿𝑝𝑝
𝜕𝜕𝑦𝑦𝑃𝑃

𝜕𝜕𝑡𝑡𝑃𝑃 − 𝜒𝜒𝛻𝛻⊥2𝑃𝑃 = −𝜕𝜕𝑦𝑦 �𝜙𝜙 𝜒𝜒, 𝜈𝜈: TBD

• Key:   𝛻𝛻∥ = 𝛻𝛻∥
(0) + 𝑏𝑏 ⋅ 𝛻𝛻⊥

• Stochastic PDE, with Multiplicative Noise:

ala’  Schrodinger Eqn. with random potential (c.f. Kraichnan, “random coupling”)

−𝛻𝛻2𝜓𝜓 + 𝑈𝑈0 𝑥𝑥 𝜓𝜓 + �𝑈𝑈 𝑥𝑥 𝜓𝜓 = 𝐸𝐸𝜓𝜓

• Generic: 𝛻𝛻 ⋅ 𝐽𝐽 = 0 Æ 𝛻𝛻∥𝐽𝐽∥ + 𝛻𝛻⊥𝐽𝐽⊥ = 0

• N.B. Presume equivalence of random perturbations and stochastic lines

Æ parallel gradient along randomly tilted lines

Model

wandering Lines...



Two Scale Formulation

• Multi-scale 𝑘𝑘′ ≫ 𝑘𝑘 �𝜙𝜙𝑘𝑘 Æ test field

• Picture

+

low n

𝑘𝑘 ⋅ 𝐵𝐵0 = 0

𝜙𝜙 = �𝜙𝜙 + �𝜙𝜙𝑘𝑘′

𝑏𝑏𝑘𝑘′

Key? Æ how determine

Æ potential fluctuations  
generated on small scale 
to maintain 𝛻𝛻 ⋅ 𝐽𝐽 = 0

Æ 𝛻𝛻∥𝐽𝐽∥ ≠ 0 ⇒ 𝛻𝛻⊥ ⋅ 𝐽𝐽⊥ ≠ 0
Cells must accompany         
current convergences

𝛾𝛾 ∼ 𝑆𝑆−1/3𝜏𝜏𝐴𝐴−1
Δx ∼ 𝑆𝑆−1/3𝑎𝑎

single test mode

Spectrum of prescribed static 
magnetic fluctuations

densely 
packed

𝑏𝑏𝑘𝑘′ 2 = 𝑏𝑏0 2𝑆𝑆 𝑘𝑘𝜃𝜃 Γ 𝑟𝑟 − 𝑟𝑟𝑘𝑘′ /𝑤𝑤𝑘𝑘′



• Two Classics:  Rechester, Rosenbluth ‘78  - test particle picture

Kadomtsev, Pogutse ‘78 – hydrodynamic 𝑙𝑙𝑚𝑚𝑚𝑚𝑝𝑝 < 𝑙𝑙𝑐𝑐

• Elements:

𝛻𝛻 ⋅ 𝑞⃗𝑞 = 0

𝑞⃗𝑞 = −𝜒𝜒∥𝛻𝛻∥𝑇𝑇 �𝑏𝑏 − 𝜒𝜒⊥𝛻𝛻⊥𝑇𝑇

𝜒𝜒∥ ≫ 𝜒𝜒⊥

• N.B.:  𝛻𝛻 ⋅ 𝑞⃗𝑞 = 0 introduces element of self-consistency

prevents heat accumulation

• 𝑞𝑞𝑟𝑟 = −𝜒𝜒∥ �𝑏𝑏𝑟𝑟2
𝜕𝜕 𝑇𝑇
𝜕𝜕𝑟𝑟

+ �𝑏𝑏𝑟𝑟𝛻𝛻∥ �𝑇𝑇 − 𝜒𝜒⊥𝛻𝛻⊥ 𝑇𝑇

• �𝑇𝑇 from 𝛻𝛻 ⋅ 𝑞⃗𝑞 = 0 Î cancellations, significant deviation from test particle theory
due 𝛻𝛻 ⋅ 𝑞⃗𝑞 = 0

Insight from a Classic

𝑏𝑏 = 𝑏𝑏0 + �𝑏𝑏

𝛻𝛻∥ = 𝛻𝛻∥
(0) + �𝑏𝑏 ⋅ 𝛻𝛻⊥



𝜙𝜙 = �𝜙𝜙 + �𝜙𝜙

Envelope:

𝜕𝜕𝑡𝑡 − 𝜈𝜈𝛻𝛻⊥2 𝛻𝛻⊥2 �𝜙𝜙 +
𝑆𝑆
𝜏𝜏𝐴𝐴

𝜕𝜕𝑥𝑥 �𝑏𝑏𝑟𝑟
2𝜕𝜕𝑥𝑥 �𝜙𝜙 = −

𝑆𝑆
𝜏𝜏𝐴𝐴

𝛻𝛻∥
0 2 �𝜙𝜙 −

𝑔𝑔
𝐿𝐿𝑃𝑃
𝜕𝜕𝑦𝑦 �𝑃𝑃 + 𝛻𝛻∥

0 𝛻𝛻⊥ ⋅ �𝑏𝑏 �𝜙𝜙 + 𝛻𝛻⊥ ⋅ �𝑏𝑏𝛻𝛻∥
0 �𝜙𝜙

Small Scale Fluctuation:

𝜕𝜕𝑡𝑡 − 𝜈𝜈𝛻𝛻⊥2 𝛻𝛻⊥2 �𝜙𝜙𝑘𝑘′ +
𝑆𝑆
𝜏𝜏𝐴𝐴

𝛻𝛻∥
(0) �𝜙𝜙𝑘𝑘′ +

𝑔𝑔
𝐿𝐿𝑃𝑃

𝜕𝜕𝑦𝑦 �𝑃𝑃𝑘𝑘′ = −
𝑆𝑆
𝜏𝜏𝐴𝐴

𝛻𝛻⊥ ⋅ �𝑏𝑏𝑘𝑘′𝛻𝛻∥
0 �𝜙𝜙 + 𝛻𝛻∥

0 �𝑏𝑏𝑘𝑘′𝛻𝛻⊥ �𝜙𝜙

�𝑃𝑃 equation

Two Scale Formulation, cont’d

�𝜙𝜙Æ 𝑘𝑘 envelope

�𝜙𝜙, �𝑏𝑏𝑘𝑘′ Æ 𝑘𝑘′

Inversion Æ 𝐺𝐺 𝑥𝑥, 𝑥𝑥″

① ② ③



𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 �𝑏𝑏𝑟𝑟

2𝜕𝜕𝑥𝑥 �𝜙𝜙 Æ magnetic vorticity damping

Æ 3rd order 𝛻𝛻∥𝐽𝐽∥

~  �𝑏𝑏 ⋅ 𝛻𝛻⊥ − 1
𝜂𝜂
�𝑏𝑏 ⋅ 𝛻𝛻⊥ �𝜙𝜙

Re-express:   
𝑆𝑆
𝜏𝜏𝐴𝐴

�𝐵𝐵𝑟𝑟𝑘𝑘′
𝐵𝐵0

2
= 𝑉𝑉𝐴𝐴

2

𝜂𝜂
𝑘𝑘𝜃𝜃
′2

𝐿𝐿𝑠𝑠2
𝑤𝑤𝐼𝐼′

4

So:   
𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 �𝑏𝑏 2𝜕𝜕𝑥𝑥 �𝜙𝜙 ∼ 𝑉𝑉𝐴𝐴

2

𝜂𝜂
𝑘𝑘𝜃𝜃
′2

𝐿𝐿𝑠𝑠2
𝑤𝑤𝐼𝐼
′4

Δ𝑥𝑥 2
�𝜙𝜙

What’s the Physics?  - what does this mess mean?

𝑤𝑤𝐼𝐼′ ≡ island width 

for stochastic field

�𝜙𝜙 layer width

①

from

estimate



𝛻𝛻∥𝐽𝐽∥ (1) ∼
𝑉𝑉𝐴𝐴2

𝜂𝜂
𝑘𝑘𝜃𝜃2

𝐿𝐿𝑠𝑠2
Δ𝑥𝑥 2 �𝜙𝜙

𝛻𝛻∥𝐽𝐽∥ (3) ∼ 𝛻𝛻∥𝐽𝐽∥
1

Æ 𝑤𝑤𝐼𝐼′ ∼
𝑘𝑘𝜃𝜃
2

𝑘𝑘𝜃𝜃
′2 Δ𝑥𝑥 4

1/4

Æ Reminiscent of Rutherford ‘73; but with 𝑘𝑘𝜃𝜃2/𝑘𝑘𝜃𝜃′2< 1 factor, due multi-scale 

interaction

𝛻𝛻∥𝐽𝐽∥ (2) > 𝛻𝛻∥𝐽𝐽∥
1 Æ magnetic torque supplants inertia in vorticity balance

unambiguously stabilizing basic vortex flow of mode

Magnetic Torque, cont’d

Æ Width of small scale island needed

ÅÆ When will 3rd order 

magnetic torque balance first order 

Æ bending term, linear

Key question:



Consider:

𝛻𝛻∥
0 + �𝑏𝑏 ⋅ 𝛻𝛻⊥ − 1

𝜂𝜂
𝛻𝛻∥

0 + �𝑏𝑏 ⋅ 𝛻𝛻⊥ ( �𝜙𝜙 + �𝜙𝜙)

Æ Nonlinear Bending + Resistivity Æ Dissipative Nonlinearity

E-fields along Perturbed Lines

③ = 𝛻𝛻∥
0 𝛻𝛻⊥ ⋅ �𝑏𝑏 �𝜙𝜙 = −𝛻𝛻∥

0 �𝑏𝑏⊥ ⋅ �𝐸𝐸⊥

② = −𝛻𝛻⊥ ⋅ �𝑏𝑏𝛻𝛻∥ �𝜙𝜙 = −𝛻𝛻⊥ ⋅ �𝑏𝑏⊥ �𝐸𝐸∥

�𝐸𝐸 = −𝛻𝛻⊥ �𝜙𝜙 , �𝜙𝜙 ~ �𝑏𝑏𝜙𝜙

③

②

②,③

E field projections
along wandering lines

𝛻𝛻∥𝐽𝐽∥ ≠ 0 at test wave 
resonance surface

lines

𝐸𝐸∥

𝐸𝐸⊥

The Rest...



How obtain �𝜙𝜙 ?

𝐿𝐿𝑘𝑘+𝑘𝑘′ �𝜙𝜙𝑘𝑘+𝑘𝑘′ = 𝐶𝐶 �𝑏𝑏𝑘𝑘 �𝜙𝜙𝑘𝑘 Æ ~  Langevin Eqn.

Screening, Small Scale �𝝓𝝓 and Convective Cells

𝜕𝜕𝑡𝑡𝑉𝑉 +
𝛾𝛾
𝑚𝑚
𝑉𝑉 =

𝑓𝑓
𝑚𝑚

Convenient to take 
𝑘𝑘 → slow interchange
𝑘𝑘′ → fast interchange

𝐿𝐿𝑘𝑘′ �𝜙𝜙𝑘𝑘′ = 𝐶𝐶 𝑏𝑏𝑘𝑘′ �𝜙𝜙

�𝜙𝜙 = �𝑑𝑑𝑟𝑟″ 𝐺𝐺 𝑟𝑟, 𝑟𝑟″ 𝐶𝐶𝑏𝑏𝑘𝑘′ �𝜙𝜙 Æ obtains �𝜙𝜙 via Green’s function

eigen mode 
operator with 𝜈𝜈,𝜒𝜒

C.C.
noise/modulation

(multiplicative)

𝑘𝑘 ≪ 𝑘𝑘′ :

mean potential



Screening, cont’d  - How determine �𝝓𝝓 ?

• Langevin Eqn. ÅÆ Fluctuation-Dissipation Theorem (?!)

�𝜙𝜙𝑘𝑘′
2 ≈

𝑐𝑐 2 𝑏𝑏𝑘𝑘′ 2 �𝜙𝜙 2

𝐿𝐿−𝑘𝑘′𝐿𝐿𝑘𝑘′

~ stationarity Æ damped response 

Æ L must be over-stable

• 𝜈𝜈,𝜒𝜒Æ turbulent diffusion from small scale electrostatic cells

𝜈𝜈,𝜒𝜒 → 𝜈𝜈𝑇𝑇 𝜈𝜈𝑇𝑇 ~ 𝑔𝑔/𝐿𝐿𝑝𝑝
1/2𝑘𝑘𝜃𝜃′

−2 + 𝛿𝛿𝜈𝜈T

𝜈𝜈𝑇𝑇 ≈�
𝑘𝑘′

𝑐𝑐𝑘𝑘′ 2 �𝑏𝑏2 𝑘𝑘′ �𝜙𝜙 2𝛾𝛾𝑘𝑘′
−1 / 𝑘𝑘𝜃𝜃′2 −

𝑔𝑔𝑘𝑘𝜃𝜃′
2

𝐿𝐿𝑝𝑝 𝜈𝜈𝑇𝑇𝑘𝑘𝜃𝜃′
2 2

2

⇒ 𝛿𝛿𝜈𝜈𝑇𝑇

𝐿𝐿𝑘𝑘 ≡ operator

Æ 𝑘𝑘𝜃𝜃′2 ≫ 𝑘𝑘𝜃𝜃2

∴ fast interchange

small increment addedsaturated

- �⃗𝑣𝑣 ⋅ 𝛻𝛻𝛻𝛻2𝜙𝜙

𝐽𝐽 ⋅ 𝛻𝛻𝑃𝑃



Screening, cont’d

• System really is :

• 𝜈𝜈,𝜒𝜒 → turbulent diffusion, due �𝜙𝜙 2

• Multi-scale interaction branches thru ES, Magnetic 
Scattering

+ +

small scale 
cells driven

test mode 𝑏𝑏𝑘𝑘′ 2

both feedback on test mode



The Feedback Loops:

𝑔𝑔

𝛻𝛻𝑃𝑃

𝜂𝜂

small convective cells

slow resistive 
interchange

large scale cell

�𝜙𝜙, 𝜈𝜈𝑇𝑇

growth?

states?

stability ?

~ driven 𝑏𝑏𝑘𝑘′ �𝜙𝜙

maintain 𝛻𝛻 ⋅ 𝐽𝐽 = 0

drive via �𝑏𝑏 �𝜙𝜙

+ �𝑏𝑏2 𝑘𝑘′

𝑘𝑘′ (high)

scattering via �𝑏𝑏 ⋅ �𝐸𝐸 ;
𝛻𝛻 ⋅ 𝑆𝑆

𝜏𝜏𝐴𝐴
�𝑏𝑏 2 ⋅ 𝛻𝛻 �𝜙𝜙

torque

𝑘𝑘

diffusion



• Integro-differential equation for �𝜙𝜙 evolution in presence specified 

𝑏𝑏𝑘𝑘′ 2

• Technically complex...

• 𝛻𝛻∥𝐽𝐽∥ (3) magnetic torque is clear and novel effect, damping vorticity

• Can formulate perturbation theory 𝛾𝛾𝑘𝑘 → 𝛾𝛾𝑘𝑘
(0) + 𝛿𝛿𝛾𝛾𝑘𝑘, in terms 

quadratic form

• Detailed analysis ongoing ...

Where Things Stand



• Problem of instability in stochastic field is intrinsically multi-scale 

and dynamic:   �𝜙𝜙 ;  �𝜙𝜙 and �𝑏𝑏

• To maintain 𝛻𝛻 ⋅ 𝐽𝐽 = 0 for prescribed �𝑏𝑏𝑘𝑘′ + instability Î �𝜙𝜙 generated

• Physics: 𝛻𝛻⊥ ⋅ 𝐽𝐽⊥ ≠ 0 to maintain 𝛻𝛻 ⋅ 𝐽𝐽 = 0Î Enter electrostatic 

micro-cells !

• Magnetic vorticity damping is generic to stochastic �𝑏𝑏 + turbulence

• Inertia Æ Inertia  +  𝑆𝑆
𝜏𝜏𝐴𝐴
𝜕𝜕𝑥𝑥 𝑏𝑏𝑟𝑟 2𝜕𝜕𝑥𝑥 �𝜙𝜙

• FOM : 𝑤𝑤𝐼𝐼′ vs  𝑘𝑘𝜃𝜃2/𝑘𝑘𝜃𝜃′
2 Δ𝑥𝑥 4

1/4

Conclusions – Lessons Learned, so far...

for: 𝛻𝛻∥𝐽𝐽∥
(2) ∼ 𝛻𝛻∥𝐽𝐽∥

(1)



• More generally, for turbulence �𝜙𝜙 in stochastic �𝑏𝑏 ; cannot treat as 

statistically independent i.e.   �𝑏𝑏 �𝜙𝜙 ≠ 0

• small scale �𝑏𝑏 leaves ‘footprint’ on modes

Conclusions – Lessons Learned, so far...

• Complete the analysis – bistability ?

• Collisionless Æ Alfvenic radiation into network of �𝑏𝑏2

• Statistical analysis Pdf(�𝑏𝑏) Æ Distribution of Eigenvalues 

A Look Ahead:

(c.f. C-C Chen, this meeting)
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